OO Design Quality Metrics
An Analysis of Dependencies

By Robert Martin
October 28,1994

2080 Cranbrook Road
Green Oaks, IL 60048
Phone: 708.918.1004
Fax: 708.918.1023
Email: rmartin@oma.com

Abdsract

This paper describes a set of metrics that can be used to measurethe
guality of an object-oriented design in termsof the interdependence
between the subsystems of that design. Designs which are highly
interdependent tend to be rigid, unreusable and hard to maintain.
Y et interdependenceis necessary if the subsystems of thedesign are
to collaborate. Thus, someforms of dependency must be desirable,
and other forms must be undesirable. This paper proposes adesign
pattern in which all the dependencies are of the desirable form.
Finally, this paper describes a set of metrics that measure the
conformance of a design to the desirable pattern.

Introduction

What is it about OO that makes designs more robust, more maintainable, and more reusable?
This is a poignant question since there have been many recent examples where applications
designed with so-called OO methods have turned out not to fulfill those claims. Arethese qualities
of robustness, maintainability and reusability intrinsic to OOD? If so, why don’t all applications
designed with OOD have them? If not, then what other characteristicsdoes a object-oriented
design require in order to have these desirable qualities?

This paper presents the case that simply using objectsto model an applicationis insufficient to
gainrobust, maintainableand reusabledesigns. That thereare other attributesof adesign that are
required. That these attributes are based upon a pattern of interdependencies between the
subsystems of the design that support communications within the design, isolate reusable elements
from non-reusable el ements, and block the propagation of change due to maintenance.

Moreover, this paper presents a set of metrics that can be easily applied to a design, and that
measuresthe conformanceof that design to thedesired pattern of dependencies. These metricsare
“Design Quality” metrics. They provideinformation to the designersregarding the ability of their
design to survive change, or to be reused.

Dependency

OO Design Quality Metrics Page 2

What isit that makes adesignrigid, fragileand difficulttoreuse. It istheinterdependenceof the
subsystems within that design. A design isrigidif it cannot be easily changed. Such rigidity is
dueto thefact that a single change to heavily interdependent software begins a cascade of changes
in dependent modules. When the extent of that cascade of change cannot be predicted by the
designersor maintainerstheimpact of the change cannot be estimated. This makesthe cost of the
change impossibleto estimate. Managers, faced with such unpredictability, becomereluctant to
authorize changes. Thus the design becomesrigid.

Fragility is the tendency of a program to break in many placeswhen a single change is made.
Oftenthe new problems are in areas that have no conceptual relationship with the area that was
changed. Such fragility greatly decreases the credibility of the design and maintenance
organization. Users and managers are unable to predict the quality of their product. Simple
changesto one part of the applicationlead to failuresin other parts that appear to be completely
unrelated. Fixing those problems leads to even more problems, and the maintenance process
begins to resemble a dog chasing its tail.

A design is difficult to reuse when the desirable parts of the design are highly dependent upon
other detailswhich arenot desired. Designerstasked with investigating thedesign to see if it can
be reused in a different application may be impressed with how well the design would do in the
new application. However if thedesignis highly interdependent, then those designerswill also be
daunted by the amount of work necessary to separate the desirable portion of the design from the
other portions of the design that are undesirable. In most cases, such designs are not reused
because the cost of the separationis deemed to be higher than the cost of redevelopment of the
design.

Example: the “Copy” program.

A simple example may help to make this point. Consider a simple program which is charged
with the task of copying characterstyped on a keyboard to a printer. Assume, furthermore, that
the implementation platform does not have an operating system that supports deviceindependence.
then we might conceive of a structure for this program that looks like this:

Copy

/o N\

Read Keyboard Write Printer

Therearethreemodules. The* Copy” modulecalls the other two. Onecan easily imaginealoop
within the “Copy” module. The body of that loop callsthe “ Read Keyboard” moduleto fetch a
character from the keyboard, it then sends that character to the “Write Printer” module which
prints the character.

Thetwo low level modules are nicely reusable. They can be used in many other programsto
gain access to the keyboard and the printer. This isthesamekind of reusability that we gainfrom

Copyright © 1994 by Robert C. Martin. All rights reserved.

OO Design Quality Metrics Page 3

subroutine libraries.

However the “Copy” moduleis not reusable in any context which does not involve a keyboard
or aprinter. Thisis ashamesincetheinteligence of the systemismaintained inthismodule. Itis
the “Copy” module that encapsulates a very interesting policy that we would like to reuse.

For example, consider a new program that copieskeyboard charactersto a disk file. Certainly
we would like to reuse the*“ Copy” module since it encapsul atesthe high level policy that we need.
i.e. itknows how to copy characters from a sourceto asink. Unfortunately, the“Copy” module
is dependent upon the “Write Printer” module, and so cannot be reused in the new context.

We could certainly modify the “Copy” module to give it the new desired functionality. We
could add an ‘if’ statement to its policy and haveit select between the“Write Printer” module and
the “Write Disk” module depending upon some kind of flag. However this adds new
interdependenciesto thesystem. Astime goes on, and moreand more devicesmust participatein
the copy program, the “Copy” modulewill be littered with if/el se statements and will be dependent
upon many lower level modules. It will eventually becomerigid and fragile.

Inverting Dependencies with OOD

One way to characterizethe problem above is to noticethat the module that contains the high
level policy, i.e. the “Copy” module, is dependent upon its details. If we could find a way to
make this module independent of the details that it controls, then we could reuse it freely. We
could produce other programs which used this module to copy charactersfrom any input deviceto
any output device. OOD gives us a mechanismsfor performing this dependency inversion.

Consider the following simple class diagram:

2"~ " "

7/ "\~
I/ l‘
v, Copy !
!
] PR
Veoren
~ -\-
W\-_' AN ,/ . ’\
i <. v Writer !
Reader ~ "\ !
S N 1 PR
----- ! ! -
l\-‘—
/-\—’ S o T~ -
/’ ~ - SN
7 \
4 K%gggd . <" Printer ¢
Ty ! -, Writer 1

L '
'

Herewe havea*“Copy” classwhich contains an abstract “ Reader” classand an abstract “Writer”
class. One can easily imagine a loop within the “Copy” class which gets charactersfrom its
“Reader” and sends them to its “Writer”. Yet this “Copy” class does not depend upon the
“Keyboard Reader” nor the “Printer Writer” at all. Thus the dependencieshave been inverted.
Now the “Copy” class depends upon abstractions, and the detailed readers and writers depend

Copyright © 1994 by Robert C. Martin. All rights reserved.

OO Design Quality Metrics Page 4

upon the same abstractions.

Now we can reusethe “Copy” class, independently of the “Keyboard Reader” and the “Printer
Writer”. We can invent new kinds of “Reader” and “Writer” derivativeswhich we can supply to
the“Copy” class. Moreover, no matter how many kinds of “Readers’ and “Writers’ are created,
“Copy” will depend upon none of them. Therewill be no interdependenciesto make the program
fragile or rigid.

Good Dependencies

What makesthe OO version of the copy program robust, maintainableand reusable? Itisitslack
of interdependencies. Yet it does have some dependencies; and those dependencies do not
interfere with those desirable qualities. Why not? Because the targets of those dependencies are
extremely stable; i.e. they are unlikely to change.

Consider the nature of the“Reader” and “Writer” classes. In C++ they could be represented as
follows:

class Witer {public: virtual void Wite(char) = 0;};
cl ass Reader {public: virtual char Read() = 0;};

These two classes are very unlikely to change. What forces exist that would cause them to
change? Certainly we could imagine some if we stretched our thinking a bit. But in the normal
course of events, these classes are extremely stable.

Thus, thereare very few forcesthat could cause”Copy” to bechanged. “Copy” isan example
of the“Open/Closed” principle at work. “Copy” isopen to be extended since we can create new
versions of “Readers’ and “Writers’ for it to drive. Yet “Copy” isclosed for modification since
we do not have to modify it to achieve those extensions.

Thus, we can say that a“Good Dependency” is a dependency upon something that is very stable.
The more stablethe target of the dependency, the more “Good” the dependency is. By the same
token a“Bad Dependency” is a dependency upon somethingthat isinstable. Themoreinstablethe
target of the dependency is, the more “Bad” the dependency is.

Stability

How does one achieve stability? Why, for example, are “Reader” and “Writer” so stable?
Consider again the forces that could make them change. They depend upon nothing at all, so a
change from a dependee cannot ripple up to them and cause them to change. | call this
characteristic “Independence”. Independent classes are classes which do not depend upon
anything else.

Another reason that “Reader” and “Writer” are stable is that they are depended upon by many
other classes. “Copy”, “KeyboardReader” and “KeyboardWriter” among them. Infact, the more
varietiesof “Reader” and “Writer” exist, the more dependents these classes have. The more
dependentsthey have, the harder it isto makechangesto them. If we wereto change®Reader” or
“Writer” we would haveto change all the other classes that depended upon them. Thus, thereisa
great deal of force preventing us from changing these classes, and enhancing their stability.

| call classes that are heavily depended upon, “Responsible’. Responsible classes tend to be
stable because any change has alarge impact.

Copyright © 1994 by Robert C. Martin. All rights reserved.

OO Design Quality Metrics Page 5

The most stable classes of al, are classesthat are both Independent and Responsible. Such
classes have no reason to change, and lots of reasons not to change.

Class Categories: the granule of Reuse and Release

Itis seldomthat a class can be reused in isolation. “ Copy” providesagood example. It must be
reused with the abstract “ Reader” and “Writer” classes. It is generally truethat aclasshas a set of
collaborating classes from which it cannot eassily be separated. In order to reuse such classes,
one must reuse the entire group. Such a group of classesis highly cohesive, and Booch calls them
a"“Class Category”.

A Class Category (hereinafter referred to as ssimply a category) is a group of highly cohesive
classes that obey the following three rules:

1. Theclasses withina category are closed together against any force of change. Thismeans
that if one class must change, al of the classeswithin the category arelikely to change. If any of
the classes are open to a certain kind of change, they are al open to that kind of change.

2. Theclasses within a category are reused together. They are strongly interdependent and
cannot be separated from each other. Thusif any attemptis made to reuse one class within the
category, al the other classes must be reused with it.

3. Theclasseswithin a category share some common function or achieve some common goal.

These threerules are listed in order of their importance. Rule 3 can be sacrificed for rule 2 which
can, in turn, be sacrificed for rule 1.

If categoriesareto bereused, they must also be released and given releasenumbers. If thiswere
not the case, reusers would not be able to rely upon the stability of the reused categories sincethe
authors might changeit at any time. Thus the authors must providereleasesof their categoriesand
identify them with release numbers so that reusers can be assured that they can have access to
versions of the category that will not be changed.

The dependencies between categories are the ones we want to manage.

Since categories are both the granule of release and reuse, it stands to reason that the
dependenciesthat we wish to manage are the dependencies between categories rather than the
dependencies within categories. After all, within a category, classes are expected to be highly
interdependent. Since all the classes within a category are reused at the same time, and since dl
classesin a category are closed against the same kind of changes, the interdependence between
them cannot do much harm.

Thus, we can moveour discussion of dependency up alevel, and discuss the “Independence”,
“Responsibility” and “ Stability” of categoriesinstead of classes. The categories with the highest
stability are categories which are both independent and highly responsible. And dependencies
upon stable categories are “good” dependencies.

Dependency Metrics

The responsibility, independence and stability of a category can be measured by counting the

Copyright © 1994 by Robert C. Martin. All rights reserved.

OO Design Quality Metrics Page 6

dependencies that interact with that category. Three metrics have been identified:

Ca: Afferent Couplings : The number of classes outside this category that depend upon classes
within this category.

Ce: Efferent Couplings : The number of classesinside this category that depend upon classes
outside this categories.

| : Instability : (Ce + (CatCe)) : This metric has therange [0,1]. 1=0 indicatesa maximaly
stable category. 1=1 indicates amaximally instable category.

Not all categories should be stable

If al the categoriesin a system were maximally stable, the system would be unchangeable. In
fact, we want portions of the design to be flexible enough to withstand significant amount of
change. How can a category which is maximally stable (1=0) be flexible enough to withstand
change? Theanswer isto befound in the “ Open/Closed” principle. Thisprincipletellsusthatitis
possible and desirableto create classes that are flexible enough to be extended without requiring
modification. What kind of classes conform to this principle? Abstract classes.

Consider the “Copy” program again. The “Reader” and “Writer” classes are abstract classes.
They arehighly stable since they depend upon nothing and are depended upon by “Copy” and dl
their derivatives. Yet, “Reader” and “Writer” can be extended, without modification, to deal with
many different kinds of 1/0 devices.

Thus, if a category is to be stable, it should also consist of abstract classes so that it can be
extended. Stable categoriesthat are extensible are flexible and do not constrain the design.

If stable categories should be highly abstract, one might infer that instable categories should be
highly concrete. In fact, this stands to reason. An abstract category must have dependents since
theremust be classes, outsidethe abstract category, that inherit fromit and implement the missing
pure interfaces. However, we do not want to encourage dependenciesupon instable categories.
Thus, instable categories should not be abstract, they should be concrete.

We can define a metric which measures the “abstractness’ of a category as follows:

A : Abstractness: (# abstract classesin category + total # of classesin category). Thismetric
rangeis[0,1]. 0 means concrete and 1 means completely abstract.

The “Main Sequence’

We are now in a position to define the relationship between stability (I) and abstractness (A).
We can create agraph with A on the vertical axis and | on the horizontal axis. If we plot the two
“good” kinds of categorieson thisgraph, we will find the categories that are maximally stableand
abstract at the upper leftat (0,1). The categoriesthat are maximally instableand concreteare at the
lower right at (1,0).

But not all categoriescan fall into one of these two positions. Categories have degrees of
abstraction and stability. For example, it is very common that one abstract class derives from
another abstract class. The derivativeis an abstractionthat has a dependency. Thus, thoughit is
maximally abstract, it will not be maximally stable. Its dependency will decrease its stability.

Copyright © 1994 by Robert C. Martin. All rights reserved.

OO Design Quality Metrics Page 7

Consider a category with A=0and I=0. Thisis a highly stable and concrete category. Such a
category is not desirablebecauseitisrigid. It cannot be extended becauseitis not abstract. Andit
isvery difficult to change because of its stability.

Consider acategory with A=1 and I=1. Thiscategory is also undesirable (perhaps impossible)
because it is maximally abstract and yet has no dependents. It, too, is rigid because the
abstractions are impossible to extend.

But what about acategory with A=.5 and I=.5? Thiscategory is partially extensiblebecauseitis
partialy abstract. Moreover, it ispartialy stableso that the extensionsare not subject to maxima
instability. Such acategory seems“balanced”. Its stability isin balance with its abstractness.

Consider again the A-I graph (below). We can draw a line from (0,1) to (1,0). Thisline
represents categorieswhose abstractness is * balanced” with stability. Becauseof itssimilarity to a
graph used in astronomy, | call thisline the “Main Sequence”.

1 0,1)

Abstraction

Instability 1

A category that sits on the main sequence is not “too abstract” for its stability, nor is “too
instable” for its abstractness. It has the “right” number of concrete and abstract classes in
proportion to its efferent and afferent dependencies. Clearly, the most desirable positions for a
category to hold are at one of the two endpoints of the main sequence. However, in my
experienceonly about half the categoriesin a project can have such ideal characteristics. Those
other categories have the best characteristicsif they are on or close to the main sequence.

Distance from the Main Sequence

Thisleads us to our last metric. If itis desirablefor categoriesto be on or closeto the main
sequence, we can create a metric which measures how far away a category isfrom thisideal.

D : Distance: |(A+I-1)+ 2| : The perpendicular distance of a category from the main sequence.
This metric ranges from [0,~0.707]. (One can normalizethis metric to range between [0,1] by
using the smpler form |(A+l1-1)|. | call thismetric Dn).

Given this metric, a design can be analyzedfor its overall conformanceto the main sequence.
TheD metricfor each category can be calculated. Any category that has aD value thatis not near

Copyright © 1994 by Robert C. Martin. All rights reserved.

OO Design Quality Metrics Page 8

zero can be reexamined and restructured. In fact, this kind of analysishave beenagreat aid to the
author in helping to define categories that are more reusable, and less sensitive to change.

Statistical analysis of adesign isalso possible. One can calculate the mean and variance of all the
D metricswithin a design. One would expect a conformant design to have a mean and variance
which were close to zero. The variance can be used to establish “control limits” which can identify
categoriesthat are “ exceptiona” in comparison to al the others.

Conclusion and Caveat

The metrics described in this paper measure the conformance of a design to a pattern of
dependency and abstraction which the author feelsisa“good” pattern. Experience has shown that
certain dependenciesaregood and othersarebad. This patternreflects that experience. However,
a metricis not a god; it is merely a measurement against an arbitrary standard. It is certainly
possible that the standard chosen in this paper is appropriate only for certain applications and is not
appropriate for others. It may also be that there arefar better metricsthat can be used to measure
the quality of adesign.

Thus, | would deeply regret it if anybody suddenly decided that all their designs must
unconditionally be conformant to “The Martin Metrics’. | hope that designers will experiment
with them, find out what is good and what is bad about them, and then communicatetheir findings
to therest of us.

Copyright © 1994 by Robert C. Martin. All rights reserved.

